JOURNAL OF APPROXIMATION THEORY 14, 225-229 (1975)

Some Remarks on the Degree of Monotone Approximation

JOHN A. ROULIER

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607

Communicated by G. G. Lorentz

DEDICATED TO PROFESSOR G. G. LORENZ ON THE OCCASION OF HIS SIXTY-FIFTH BIRTHDAY

1. INTRODUCTION

Many articles have been written on the degree of convergence of monotone approximation. See Shisha [7], Roulier [5] and [6], Lorentz and Zeller [1] and [2], and Lorentz [3].

The problem is as follows. Let $1 \leq k_1 < k_2 < \cdots < k_p$ be integers and $\epsilon_1, \ldots, \epsilon_p$ corresponding signs (± 1) . For each nonnegative integer *n* let H_n be the set of all polynomials of degree less than or equal to *n*. Let M_n be the set of all those polynomials *p* in H_n which satisfy $\epsilon_i p^{(k_i)}(x) \ge 0$ for $a \le x \le b$ and $i = 1, \ldots, p$.

If $f \in C[a, b]$ define $D_n(f) = \inf_{p \in M_n} ||f - p||$, where $|| \cdot ||$ is the uniform norm on [a, b]. Let $E_n(f) = \inf_{p \in H_n} ||f - p||$. If $\epsilon_i f^{(k_i)}(x) \ge 0$ for $a \le x \le b$ and i = 1, ..., p then we seek upper bounds for $D_n(f)$. Most of the estimates obtained to date have been restricted to $p = 1, k_1 = k, \epsilon_1 = 1$ and are not best possible. Lorentz and Zeller in [2] show that there is an $f \in C[a, b]$ with $f^{(k)}(x) \ge 0$ on [a, b] for which

$$\overline{\lim_{n\to\infty}} D_n(f)/E_n(f) = +\infty.$$

On the other hand Lorentz in [3] conjectures that for function f satisfying $\epsilon_i f^{(k_i)}(x) > 0$ for $a \leq x \leq b$ and i = 1, ..., p we have

 $D_n(f)/E_n(f)$ bounded.

Roulier in [5] and [6] studies these cases. In [6] Roulier finds sufficient conditions on f to insure that for n sufficiently large

$$D_n(f) = E_n(f).$$

In [5] Roulier obtains sufficient conditions to insure that $D_n(f)/E_n(f)$ is bounded but the bound obtained depends on the range of f'. It is the purpose

of this paper to use the result of [6] to make an observation on "best possible" estimates in the Jackson sense and to improve the results from [5] obtaining a bound on $D_n(f)/E_n(f)$ independent of the range of f'.

2. THE FIRST RESULT

In this section we consider the case p = 1, $k_1 = 1$, $\epsilon_1 = 1$. We first give two lemmas.

LEMMA 1. Let $f' \in C[a, b]$ and assume that $0 \leq f'(x) \leq M$ on [a, b]. Then, given any x in [a, b], there exist constants η and ξ in (a, b) so that

$$\int_{a}^{b} (f(x) - f(t)) dt = \frac{1}{2} [f'(\eta)(x - a)^{2} - f'(\xi)(x - b)^{2}].$$

Moreover,

$$\left|\int_a^b \left(f(x)-f(t)\right)\,dt\,\right|\leqslant \tfrac{1}{2}M(b-a)^2.$$

Proof. Observe that

$$\int_{a}^{b} (f(x) - f(t)) dt = \int_{a}^{b} f[x, t](x - t) dt$$

= $\int_{x-b}^{x-a} f[x, x - u] u du$
= $\int_{0}^{x-a} f[x, x - u] u du + \int_{x-b}^{0} f[x, x - u] u du.$

LEMMA 2. Let $f' \in C[0, 1]$ and assume that $0 < d \leq f'(x) \leq M$ on [0, 1]. Then for n sufficiently large we have

$$D_n(f) \leq ((M/d) + 1) E_n(f).$$

Proof. The proof is the same as that of Theorem 1 in [5] using Lemma 1 and the fact that if S_n is the polynomial of best approximation to f on [0, 1] then $S_n(x_2) - S_n(x_1) \ge 0$ if $x_2 - x_1 \ge 2E_n(f)/d$.

THEOREM 1. Let $f' \in C[0, 1]$ and assume that $f'(x) \ge d > 0$ on [0, 1]. Then, if f is not a polynomial,

$$\overline{\lim_{n\to\infty}} D_n(f)/E_n(f) \leqslant 2.$$

Proof. Let $\alpha \ge 1$ be fixed. Choose *m* so large that $E_m(f') < d/(3 + \alpha)$. Let p_m be the polynomial from H_m of best approximation to f' on [0, 1]. Let $h(x) = f'(x) - p_m(x) + (1 + \alpha) E_m(f')$. Then we have

$$\alpha E_m(f') \leqslant h(x) \leqslant (2+\alpha) E_m(f'). \tag{1}$$

Now let

$$\phi(x) = \int_0^x h(t) \, dt$$

Thus we have

$$\phi(x) = f(x) - Q_{m+1}(x),$$
(2)

where

$$Q_{m+1}(x) = f(0) + \int_0^x (p_m(t) - (1 + \alpha) E_m(f')) dt.$$
(3)

We also see that

$$Q'_{m+1}(x) = p_m(x) - (1 + \alpha) E_m(f')$$

= $p_m(x) - f'(x) + f'(x) - (1 + \alpha) E_m(f')$
 $\geq f'(x) - (2 + \alpha) E_m(f')$
 $\geq d - (2 + \alpha)d/(3 + \alpha)$
= $d/(3 + \alpha)$.

From (1) and the fundamental theorem of calculus we have

 $\alpha E_m(f') \leqslant \phi'(x) \leqslant (2 + \alpha) E_m(f').$

By Lemma 2 we have for n sufficiently large

$$D_n(\phi) \leqslant \left(\frac{2+\alpha}{\alpha}+1\right) E_n(\phi).$$

That is, for *n* sufficiently large,

$$D_n(\phi) \leq 2(1+(1/\alpha)) E_n(\phi).$$

If in addition $n \ge m + 1$, we have from (2) and the monotonicity of Q_{m+1}

$$E_n(\phi) = E_n(f)$$
 and $D_n(\phi) \ge D_n(f)$.

This, together with (4), gives

$$D_n(f)/E_n(f) \leq 2(1+(1/\alpha))$$
 for n

sufficiently large. But α can be chosen as large as desired. This completes the proof.

JOHN A. ROULIER

3. Best Possible Estimates

If f has infinitely many continuous derivatives on [a, b] and if $\epsilon_i f^{(k_i)}(x) > 0$ on [a, b] for i = 1, ..., p then it follows as a special case of the main theorem in [6] that for n sufficiently large we have

$$E_n(f) = D_n(f).$$

So we may as well for further study assume that there is a $k \ge k_p$ for which $f^{(k)}$ is continuous on [a, b] and $f^{(k+1)}$ is not continuous on [a, b]. For simplicity in what follows we will work on the interval [-1, +1].

DEFINITION. For $-1 \leq x \leq 1$ and n = 1, 2, ... define

$$\Delta_n(x) = \max\left(\frac{(1-x^2)^{1/2}}{n}, \frac{1}{n^2}\right)$$

and $\Delta_0(x) = 1$.

THEOREM 2. Let $1 \leq k_1 < k_2 < \cdots < k_p$ be p fixed integers and $\epsilon_1, ..., \epsilon_p$ fixed signs. Assume $\epsilon_i f^{(k_i)}(x) > 0$ on [-1, +1] for i = 1, 2, ..., p. We also assume that for some integer $k \geq k_p$ we have $f^{(k)} \in C[-1, +1]$ but $f^{(k+1)} \notin C[-1, +1]$. With these assumptions we can conclude that there are polynomials $P_n \in H_n$ such that

$$|f(x) - P_n(x)| \leq C_k \mathcal{\Delta}_n(x)^k w(f^{(k)}, \mathcal{\Delta}_n(x))$$
(5)

and for n sufficiently large we have $\epsilon_i P_n^{(k_i)}(x) > 0$ for $-1 \leq x \leq 1$ and i = 1, 2, ..., p.

Moreover, this result is best possible in the sense that no sequence of polynomials $P_n \in H_n$ can satisfy (5) if we replace $\Delta_n(x)^k$ in the right side of (5) by $\Delta_n(x)^{k+\epsilon}$ for some $\epsilon > 0$.

The proof is an easy consequence of the theorem in [8] and Theorem 6 in [4, p. 75].

References

- 1. G. G. LORENTZ AND K. L. ZELLER, Degree of approximation by monotone polynomials I, J. Approximation Theory 1 (1968), 501–504.
- 2. G. G. LORENTZ AND K. L. ZELLER, Degree of approximation by monotone polynomials II, J. Approximation Theory 2 (1969), 265-269.
- 3. G. G. LORENTZ, "Monotone Approximation, Inequalities III," (O. Shisha, Ed.), p. 201-215, Academic Press Inc., New York, 1969.
- 4. G. G. LORENTZ, "Approximation of Functions," Holt, Rinehart and Winston, New York, 1966.

- 5. J. A. ROULIER, Monotone approximation of certain classes of functions, J. Approximation Theory 1 (1968), 319-324.
- 6. J. A. ROULIER, Polynomials of best approximation which are monotone, J. Approximation Theory 9 (1973), 212-217.
- 7. O. SHISHA, Monotone approximation, Pacific J. Math. 15 (1965), 667-671.
- 8. V. N. MALOZEMOV, Joint approximation of a function and its derivatives by algebraic polynomials, *Soviet Math. Dokl.* 7 (1966), 1274–1276.