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1. INTRODUCTION

Many articles have been written on the degree of convergence of monotone
approximation. See Shisha [7], Rou1ier [5] and [6], Lorentz and Zeller [1]
and [2], and Lorentz [3].

The problem is as follows. Let 1 :s; k1 < k 2 < .,. < k'J) be integers and
£1 ,... , £'J) corresponding signs (±l). For each nonnegative integer n let H",
be the set of all polynomials of degree less than or equal to n. Let M n be the
set of all those polynomialspin H n which satisfy £i p(k'l(X) ~ 0 for a :s; x :s; b
and i = 1,... , p.

If fE C[a, b] define Dn(f) = inf'J)EM Ilf - p II, where II '11 is the uniform
norm on [a, b]. Let En(f) = inf'J)EH Ilf~ p II. If£d(k'l(x) ~ Ofora :s; x :s; b
and i = 1,..., p then we seek uppe; bounds for Dn(f). Most of the estimates
obtained to date have been restricted to p = 1, k1 = k, £1 = 1 and are not
best possible. Lorentz and Zeller in [2] show that there is an fE C[a, b]
withj<kl(x) ~ 0 on [a, b] for which

lim Dn(f)/En(f) = +00.
n->OO

On the other hand Lorentz in [3] conjectures that for function f satisfying
£d(k,l(X) > 0 for a :s; x :s; band i = 1,... , p we have

Dn(f)/En(f) bounded.

Roulier in [5] and [6J studies these cases. In [6J Roulier finds sufficient
conditions onfto insure that for n sufficiently large

In [5J Rou1ier obtains sufficient conditions to insure that Dn(f)/En(f) is
bounded but the bound obtained depends on the range off'. It is the purpose
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of this paper to use the result of [6] to make an observation on "best possible"
estimates in the Jackson sense and to improve the results from [5] obtaining
a bound on DnCf)/En(f) independent of the range of1'.

2. THE FIRST REsULT

In this section we consider the case p = 1, k l = 1, €l = 1. We first give
two lemmas.

LEMMA 1. Let l' E qa, b] and assume that 0 ~ 1'(x) ~ M on [a, b].
Then, given any x in [a, b], there exist constants TJ and g in (a, b) so that

r(f(x) - jet»~ dt = ![1'(TJ)(x - a)2 - 1'(g)(x - b)2].
a

Moreover,

If (f(x) - jet»~ dt I~ tM(b - a)2.

Proof Observe that

r(f(x) - jet»~ dt = rj[x, t](x - t) dt
a a

= r-a
j[x, x - u]u du

",-b

f",-a fO
= f[x, X - u]u du + f[x, X - u]u du.

o ",-b

LEMMA 2. Letl' E qo, 1] and assume that 0 < d ~ 1'(x) ~ M on [0, 1].
Then for n sufficiently large we have

Proof The proof is the same as that of Theorem 1 in [5] using Lemma 1
and the fact that if Sn is the polynomial of best approximation to f on [0, 1]
then Sn(x2) - Sn(xI ) ;;:;, 0 if X2 - Xl ;;:;, 2EnCf)/d.

THEOREM 1. Let l' E qo, 1] and assume that 1'(x) ;;:;, d > 0 on [0,1].
Then, iff is not a polynomial,
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Proof Let 0: ?: I be fixed. Choose m so large that EmU') < d/(3 + 0:).
Let Pm be the polynomial from Hm of best approximation to l' on [0, I].
Let hex) = 1'(x) - Pm(x) + (I + 0:) EmU'). Then we have

o:EmU') ~ h(x) ~ (2 + 0:) EmU')· (1)

Now let

4>(X) = r h(t) dt.
o

Thus we have

where

4>(x) = f(x) - Qm+I(x), (2)

Qm+I(X) = f(O) +r(Pm(t) - (1 + 0:) EmU'» dt. (3)
o

We also see that

Q;"+I(X) = Pm(X) - (I + 0:) EmU')

= Pm(x) - 1'(x) +1'(x) - (I + 0:) EmU')

?: 1'(x) - (2 + 0:) EmU')

?: d - (2 + 0:)d/(3 + 0:)

= d/(3 + 0:).

From (I) and the fundamental theorem of calculus we have

o:EmU') ~ 4>'(x) ~ (2 + 0:) EmU').

By Lemma 2 we have for n sufficiently large

That is, for n sufficiently large,

If in addition n ?: m + I, we have from (2) and the monotonicity of Qm+I

En(4)) = EnU) and Dn(4)) ?: DnU).

This, together with (4), gives

DnU)/EnU) ~ 2(1 + (1/0:» for n

sufficiently large. But 0: can be chosen as large as desired. This completes the
proof.
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3. BEST POSSIBLE ESTIMATES

If/has infinitely many continuous derivatives on [a, b] and if Ed<k;)(X) > 0
on [a, b] for i = 1, ...,p then it follows as a special case of the main theorem
in [6] that for n sufficiently large we have

So we may as well for further study assume that there is a k ~ kl} for which
j<k) is continuous on [a, b] and j<k+I) is not continuous on [a, b]. For simplicity
in what follows we will work on the interval [-1, +1].

DEFINITION. For -1 <: x <: 1 and n = 1,2,... define

and L1o(x) = 1.

THEOREM 2. Let! <: k l < k 2 < ... < kl}bepfixedintegersandEI ,... , El}

fixed signs. Assume Ed<ki)(X) > 0 on [-1, +1] for i = 1,2, ...,p. We also
assume that for some integer k ~ kl} we have j<k) E C[-1, +1] but
j<k+ll ¢ C[-1, +1]. With these assumptions we can conclude that there are
polynomials P II. E Hn such that

(5)

and for n sufficiently large we have EiP~ki)(X) > 0 for -1 <: x <: 1 and
i = 1,2,... ,p.

Moreover, this result is best possible in the sense that no sequence of
polynomials P" E Hn can satisfy (5) if we replace Lln(X)k in the right side of (5)
by L1 n(x)k+< for some E > O.

The proof is an easy consequence of the theorem in [8] and Theorem 6
in [4, p. 75].
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